

Effect of Agricultural activities on Surface water quality of Kolthur and Sampambole Lakes of Medchal Malkajgiri district, Telangana India

V. Rajkumar^{*1}, K. Shailaja^{1,2}, S. Gangadhar Rao²

¹Department of Environmental Science, University College of Science, Osmania University, Hyderabad, Telangana, 500 007-India ²Department of Botany, University College of Science, Osmania University, Hyderabad, Telangana, 500 007-India

Citation: V. Rajkumar, K. Shailaja, S. Gangadhar Rao (2024). Effect of Agricultural activities on Surface water quality of Kolthur and Sampambole Lakes of Medchal Malkajgiri district, Telangana India. Environmental Reports; an International Journal. 01 to 04. DOI: https://doi.org/10.51470/ER.2024.6.2.01

Corresponding Author: V. Rajkumar | E-Mail: (vaddemanrajkumar@gmail.com)

Received 05 June 2024 | Revised 08 July 2024 | Accepted 12 August 2024 | Available Online September 15 2024

ABSTRACT

One essential natural resource for the existence of all ecosystems on Earth is water. Conventional irrigation techniques and the overuse of fertilizers for high product yields are the main source of contamination in a catchment's surface water. Chemical fertilizers such as Nitrogen, Phosphorus, Potassium (NPK), urea and manure are widely applied on agricultural farm lands to improve crop yield thereby compromising the quality of the water sources. Phosphorus is an important nutrient for plant growth. In aquatic systems, a lack of phosphorus often limits aquatic plant growth. Excess phosphorus is usually considered to be a pollutant. The present study focuses on the effects of agriculture on two Lakes i.e., Kolthur Lake and Sampambole Lake of Medchal-Malkajgiri district of Telangana by assessing the NPK and physico-chemical parameters. A total of eight and six samples were collected during the pre-monsoon, monsoon and postmonsoon season from Kolthur and Sampambole Lakes respectively. The study is done to assess the nitrates, phosphates and potassium levels in these Lakes to understand the effect on surface water upon fertilizer application. The parameters, pH, TA, TH, Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl and F, all the samples in all the three seasons were found to be in the accepted limits of the BIS standard values. The other parameters which determine the water pollution due to agricultural activities are the turbidity, total dissolved solids, potassium, nitrates, phosphates, dissolved oxygen and biological oxygen demand were found to be exceeding the BIS standards, in majority of the samples. It was clearly observed that the intense agricultural practices have increased the nitrate and phosphate concentrations as well as other dissolved ions in both the Lakes.

Keywords: Fertilizer, Agricultural Practices, Nitrate, Phosphate, Groundwater

INTRODUCTION

One essential natural resource for the existence of all ecosystems on Earth is water. Less than 1% of the water resources on Earth, however, are available to people as fresh water, either as groundwater or surface water [1-2]. Water quality problems are often attributed to loadings of nutrients, chemicals, and pathogens into an aquatic system from point source and non-point source activities [3]. Out-dated agricultural management practices are the main source of contamination in a catchment's surface and ground water. These include conventional irrigation techniques, the overuse of fertilizers for high product yields, the application of pesticides and herbicides, and poorly managed animal agriculture enterprises [4]. Additional factors include untreated sewage pollution, rainfall-induced air deposits, fracking, and deforestation. However, the research presented in this paper focuses on the relationship between agricultural management practices and the decline in water quality. These activities may result in fluxes of nutrients, chemicals, pathogens, and sediment, as high losses of nitrogen and phosphorus are the main cause of nutrient problems [4].

Chemical fertilizers such as Nitrogen Phosphorus Potassium (NPK), urea and manure are widely applied on agricultural farm lands to improve crop yield thereby compromising the quality of the water sources [5]. Phosphorus is an important nutrient for plant growth. In aquatic systems, a lack of phosphorus often limits aquatic plant growth. Excess phosphorus is usually considered to be a pollutant.

The present study focuses on the effects of agriculture on two Lakes i.e., Kolthur Lake and Sampambole Lake of Medchal-Malkajgiri district of Telangana State.

Study Area

Kolthur Lake and Sampambole Lake both are found in the Medchal Malkajgiri district in Telangana, India. It falls under Shamirpet mandal. The water samples were collected from eight (K1 to K8) and six (S1 to S6) sample locations of Kolthur Lake and Sampambole Lake of Medchal Malkajgiri district during all the three seasons i.e., during the pre-monsoon (PRM), monsoon (MN) and post-monsoon (POM) and are shown in table 1a, 1b and fig 1. Both lakes are surrounded by the agricultural fields as shown in fig 2 and 3.

Table 1a: Sampling Locations of Kolthur Lake

S. No	Latitude	Longitude
K1	17.661879	78.639725
K2	17.663207	78.640258
K3	17.664124	78.640520
K4	17.664559	78.641196
K5	17.665728	78.640906
K6	17.665934	78.642351
K7	17.664125	78.641649
K8	17.662566	78.640742

Table 1b: Sampling Locations of Kolthur Lake

S. No	Latitude	Longitude
S1	17.63966	78.62605
S2	17.638986	78.62423
S3	17.638959	78.6219
S4	17.640998	78.62237
S5	17.641446	78.62488
\$6	17.640434	78.62378

Fig 1: Map showing sample location points of both Kolthur and Sampambole Lake.

Fig 2: Google Earth Image showing the Kolthur Lake

Fig 3: Google Earth Image showing the Sampambole Lake

MATERIALS AND METHODOLOGY

The parameters assessed were pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), carbonates (CO_3^{-1}), bicarbonates (HCO_3^{-1}), sodium (Na), potassium (K), calcium (Ca^{+2}), magnesium (Mg^{+2}), chloride (CI), fluoride (F), sulphates (SO_4^{-2}), phosphates (PO_4^{-3}), dissolved oxygen (DO), biological oxygen demand (BOD) and chemical oxygen demand (COD). The determination of Dissolved Oxygen (DO) was done at the field using portable DO meter. Then they were taken to the laboratory and refrigerated at 4°C. The samples used for determination of Biological Oxygen Demand (BOD) were directly collected in BOD bottles by adding some drops of magnesium sulphate solution to fix dissolved oxygen. All other physico-chemical analysis was done using the APHA standard methods for the twenty parameters. The results were compared with the BIS (2012) standards.

RESULTS AND DISCUSSION

The results obtained for the both Lakes i.e., Kolthur Lake and Sampambole Lake during the PRM, MON and POM including the

minimum, maximum and average values are shown in the table 2 and 3 respectively. The pH values ranged between 7.44 to 8.45 and 7.56 to 8.39 for Kolthur and Sampambole Lakes respectively. The EC values were between 811 to $1077 \,\mu\text{S/cm}$ for the Kolthur Lake and between 995 to 1133 μ S/cm for the Sampambole Lake. The TDS were found to be in the range of 519 to 690 mg/L and 637 to 725 mg/L for Kolthur and Sampambole Lake respectively and found to be exceeding the acceptable limits of BIS standards in all the three seasons. The Turbidity was found to be in the range of 8 to 76 NTU and 8 to 94 NTU for Kolthur and Sampambole Lake respectively. It is also found that the turbidity was also exceeding the acceptable limits of BIS standards in all the three seasons. The Nitrates (NO_3) during the post monsoon season for all the samples except K1 and K2, K3 and K5 samples of the monsoon season were found to be exceeding the BIS acceptable standards. All the samples of premonsoon were within the acceptable limits for the Kolthur Lake. The values ranged between 25 to 73 mg/L. For the Sampambole Lake, all the samples of pre-monsoon were within the acceptable limits. Whereas for the S2, S3, S4 and S5 and all other samples of post-monsoon were found to be exceeding the acceptable limits of BIS acceptable limit. The values ranged between the 38 to 81mg/L. Blue baby syndrome, also known as methamoglobianemia, is a common illness in infants caused by high nitrate concentrations in drinking water. The fact that nitrate can be transformed into nitrosamines by bacteria in the digestive tract, which may cause cancer, is significant and adds to the concern about nitrate's effects on humans. Recent investigations have found that these compounds have strong carcinogenic effects. Water eutrophication, a condition where there are higher levels of nitrogen and phosphorous compounds in the water, leads to the growth of more aquatic plants and algae as well as the deterioration of the water environment and quality. This is one of the most significant adverse effects of intensive fertilizer use.

The Potassium (K^{$^{+}$}) was exceeding the BIS limits during the post monsoon season of both Kolthur and Sampambole Lakes. The values ranged between the 3.1 to 17.6 mg/L for the Kolthur Lake and 3.1 to 26.2 mg/L for the Sampambole Lake respectively.

The Phosphates (PO_4^2) were also found to be exceeding the BIS standard value for all the three seasons in both the Lakes and it was found to be between 1.1 to 8.9 mg/L for Kolthur Lake and 1.6 to 6.5 mg/L for the Sampambole Lake. Phosphorus is recognized as one of the major nutrients contributing to the increased eutrophication of Lakes and other natural waters [6].

The Dissolved oxygen was found to be within the acceptable limits for both the pre-monsoon and post-monsoon except for the monsoon. All the samples of monsoon were exceeding the acceptable limits and the values ranged between 1.5 to 6.5 mg/L for the Kolthur Lake. For the Sampambole Lake all the values were within the acceptable limits and the values ranged between 1.8 to 5.7 mg/L. The increase in value can be attributed to the addition of oxidisable organic matter from the effluents, biodegradation and decay of vegetation at higher temperature thereby taking oxygen from water [7-8]. For the Biological Oxygen demand parameter all the samples for all the seasons were exceeding the acceptable limits and the values ranged between 20 to 130 mg/L for the Kolthur Lake. For the Sampambole Lake all the values were exceeding the acceptable limits in all the seasons and the values ranged between 30 to 130 mg/L. The chemical oxygen demand values were between 70 to 360 mg/L for the Kolthur Lake and between 73 to 360 mg/L for the Sampambole Lake.

The parameters like turbidity, total dissolved solids, potassium, phosphates, dissolved oxygen and biological oxygen demand are found are exceeding the BIS standards in majority

TA, TH, Na ⁺ , Ca ⁺⁺ , Mg ⁺⁺ , Cl ⁻ and F ⁻ , all the samples in all the three seasons were found to be within the accepted limits of the BIS standard values.
85 to 151 mg/L for the Sampambole Lake. The fluorides values ranged between the 0.27 to 0.68 mg/L and 0.35 to 0.78 mg/L for Kolthur and Sampambole Lakes respectively. The pH
between 84 to 164 mg/L and 122 to 171 mg/L for Kolthur and Sampambole Lakes respectively. The sulphates values were between 60 to 134 mg/L for the Kolthur Lake and betweer
Sampambole Lake. The Chloride values were between 160 to 230 mg/L for the Kolthur Lake and between 169 to 225 mg/L for the Sampambole Lake. The sodium values ranged
between 10 to 23 and 10 to 22 mg/L for Kolthur and Sampambole Lakes respectively. The TH values ranged from 144 to 199 mg/L in Kolthur Lake and 155 to 199 mg/L ir
Lakes respectively. The calcium values were between 38 to 59 mg/L for the Kolthur Lake and between 32 to 60 mg/L for the Sampambole Lake. The magnesium values ranged
Kolthur Lake and between 106 to 194 mg/L for the Sampambole Lake. The total alkalinity values ranged between 90 to 190 mg/L and 110 to 194 mg/L for Kolthur and Sampambole
The carbonates values ranged between the 10 to 20 mg/L for both Kolthur and Sampambole Lakes respectively. The bicarbonates values were between 80 to 190 mg/L for the
of the samples, which can be used to determine the water pollution due to agricultural activities

		F-	1	0.6	0.5	9.0	9.0	9.0	0.7	0.6	0.5	0.5	0.7	0.6		0.5	0.7	0.5	0.6	0.5	0.6	0.5	0.3	0.3	0.7	0.5		0.38	0.27	0.4	0.51	0.29	0.57	0.35	0.4	0.3	0.6	0.4
bidity -NTU		$SO4^{2}$	200	108	105	109	120	116	66	101	119	66	120	110		75	87	95	101	91	06	134	115	75	134	66	-	60	72	89	78	65	60	68	71	60	89	70
	Ī	Na+	200	159	140	148	152	155	147	164	148	140	164	152		100	122	136	143	140	140	155	145	100	155	135	-	84	115	129	124	130	127	107	122	84	130	117
		CI-	250	215	210	210	205	224	230	210	220	205	230	216		185	194	205	180	180	200	180	193	180	205	190		172	180	188	160	179	178	173	187	160	188	177
1	Ī	Mg^{2+}	30	12	14	13	14	13	19	12	14	12	19	14		19	17	23	13	15	13	11	17	11	23	16	-	13	15	20	17	14	20	10	13	10	20	15
		Ca²+	75	38	41	43	48	44	45	49	50	38	50	45		44	50	40	52	41	50	48	40	40	52	46	-	58	55	41	49	50	42	59	53	41	59	51
	Ī	TA	200	90	120	134	136	114	130	190	112	06	190	128		110	131	130	158	173	150	147	131	110	173	141	-	135	178	155	186	189	182	160	153	135	189	167
	-	HCO ₃ -	200	80	110	124	136	114	130	190	112	80	190	125		110	131	130	158	153	150	147	131	110	158	139		125	168	155	186	189	182	160	153	125	189	165
	-	CO3 ²⁻ H		10	10	10	Nil	Nil	Nil	Nil	Nil	Nil	10	3.8		Nil	Nil	Nil	Nil	20	Nil	Nil	Nil	Nil	20	3		10	10	Nil	Nil	Nil	Nil	Nil	Nil	10	10	10
	son	TH (200	144	160	161	177	163	190	172	182	144	190	169	u	188	195	194	183	164	178	165	170	164	195	180	son	198	199	185	192	182	187	189	186	182	199	190
	soon Seas	COD		170	210	225	294	280	330	210	280	170	330	250	on Seaso	112	140	130	120	170	360	270	130	12	360	179	soon Sea	125	81	70	75	156	314	214	70	70	814	138
	Pre-Mons	son (<2	57	76 :	80	105	110	118	76 :	95	57	118	2 06	g Monso	32	47	40	40	53	130	91	45	32	130	09	ost-Mon	20	40	35	34	45	80	45	39	20	80	42
	During	DO E	>5	2.8	3.2	3.9	3.4	3.1	2.7	3.3	3	2.7	3.9 1	3.2	Durin	4.3	4.1	4.8	4.2	3.7	2.1	1.5	4.4	1.5	1.8	3.6	During P	5.5	4.6	5.1	3.9	5.9	2.6	5.3	2.9	2.6	5.5	4.7
	-	K+	10	5.1	5	7	5.3	5.2	7	6	5.9	2.0	2.0	5.2		3.8	3.2	4.6	3.4	4.3	4.4	3.1	3.8	3.1	1.6	3.8		15	18	17	15	16	17	17	15	15	18	6.2
	-	04 ³⁻	0.1	1.5	1.6	2.9	2.3	1.7	2.9	1.3	1.4	L.3	. 6.2	2.0		3.3	3.8	3.3	3.3	4.5	3.9	4.1	3.7	3.3	. 3.9	1.4		1.4	1.4	1.7	3.5	2.1	.05	2.7	1.1	l.1	3.5	2.1 1
	-	NO ₃ - P	45 (28	30	39	25	39	29	33	30	25	39	32		26 :	47	46 :	45	57	42 4	39	36	26	57	42	-	41	65	55	49	73	59 3	50	46	41	73 :	55
	-	Turbidity	ഗ	60	72	74	54	61	76	58	70	54	76	99		10	8	12	6	11	13	13	10	8	13	11		16	21	20	17	25	31	24	19	16	31	22
	ſ	TDS	500	621	617	650	652	666	655	690	656	617	069	651		519	599	628	633	633	630	659	629	519	659	616		525	627	633	604	640	612	580	600	525	640	603
	Ī	EC	1500	970	965	1016	1018	1041	1023	1077	1024	965	1077	1017		811	937	981	686	988	984	1029	982	811	1029	963	-	820	979	686	944	1001	957	906	937	820	1001	941
	ŀ	hН	5.5-8.5	8.4	8.4	8.4	8.1	8.1	8.0	7.8	8.2	7.8	8.4	8.2		7.7	7.5	7.6	7.9	7.9	7.4	7.6	7.8	7.4	7.9	7.7		7.5	8.2	8.1	8.0	8.0	7.6	7.9	7.7	7.5	8.2	7.9
	-	S. No	BIS 2012	1	2	3	4	ъ	6	7	8	Min	Max	Avg.		1	2	3	4	5	6	7	8	Min	Max	Avg.		1	2	3	4	5	6	7	8	Min	Max	Avg.

	Table	3: Chemic	al Analysis	s of Sampambol	e Lake wai	ter sample:	s for Pre-N	fonsoon,	Monsoon á	and Post-M	lonsoon st	ason (All	oarameter.	s are in mg	3/L except	t pH, EC-μS,	/cm and T	urbidity N	(UT)	
								Ũ	uring Pre N	Monsoon Se	eason									
S. No	μd	EC	TDS	Turbidity	NO ₃ -	$P0_{4}^{3}$	K+	D0	BOD	COD	TH	CO ₃ 2-	HCO ₃	TA	Ca ²⁺	Mg^{2+}	cŀ	Na+	SO_4^2	F-
BIS 2012	6.5- 8.5	1500	500	ы	45	0.1	10	>5	<2	1	200	ı	200	200	75	30	250	200	200	1
1	8.3	1079	069	68	39	1.7	8.9	3.1	80	168	170	Nil	121	121	32	22	216	171	128	0.8
2	8.4	1112	711	94	39	1.8	5.3	3.1	84	190	159	20	106	126	44	12	225	170	140	9.0
3	8.3	1052	673	58	45	2.7	6.4	2.4	130	360	186	Nil	110	110	40	21	195	148	151	0.6
4	8.3	1090	698	67	44	2.1	8.6	2.6	122	345	177	Nil	141	141	51	12	185	163	149	0.6
ъ	8.2	1096	702	73	42	3.4	7.5	3.1	67	310	185	10	151	161	56	11	206	160	122	0.6
9	8.4	1069	684	55	38	1.7	8.4	3.1	83	205	176	10	130	140	49	13	201	155	135	0.5
Min	8.2	1052	673	55	38	1.7	5.3	2.4	80	168	159	10	106	110	32	11	185	148	122	0.5
Мах	8.4	1112	711	94	45	3.4	8.9	3.1	130	360	186	20	151	161	56	22	225	171	151	0.8
Avg.	8.3	1083	693	69	41	2.2	7.5	2.9	66	263	176	13	127	133	45	15	205	161	138	0.6
									During Mo	insoon Sea	son									
1	7.8	1066	682	8	40	4.1	5.1	4.3	43	135	181	Nil	134	134	56	10	210	159	121	0.6
2	7.9	1045	699	14	46	3.4	3.7	4.4	41	120	163	Nil	138	138	39	16	217	161	103	0.5
3	7.9	995	637	11	51	4.9	3.1	2.8	65	170	187	Nil	170	170	52	14	174	136	104	0.4
4	7.8	1019	652	13	69	5.3	3.5	1.8	106	310	192	Nil	162	162	44	20	171	137	110	0.4
5	8.0	1049	671	15	57	6.5	3.9	2.9	80	250	179	10	180	190	42	18	185	151	100	0.5
9	7.8	1008	645	15	45	3.6	5.5	4.2	47	128	183	Nil	157	157	52	13	173	138	124	0.4
Min	7.8	995	637	8	40	3.4	3.1	2	41	120	163	10	134	134	39	10	171	136	100	0.4
Мах	8.0	1066	682	15	69	6.5	5.5	4	106	310	192	10	180	190	56	20	217	161	124	0.6
Avg.	7.9	1030	629	13	51	4.6	4.1	3	64	186	181	2	157	159	48	15	188	147	110	0.5
								Du	ring Post l	Monsoon S	eason									
1	7.9	1133	725	20	47	1.9	18.9	4.2	40	73	199	Nil	189	189	60	12	207	152	114	0.6
2	7.7	1066	682	30	57	1.6	17.4	5.7	30	115	177	Nil	176	176	43	17	198	148	96	0.4
3	7.6	1022	654	18	59	3.8	24.5	2.9	62	129	181	Nil	175	175	46	16	169	129	105	0.4
4	7.7	1060	679	34	81	4.6	26.2	3.3	70	122	199	Nil	185	185	45	21	172	129	93	0.5
5	7.9	1031	660	26	69	4.2	17.7	2.6	81	267	191	Nil	194	194	50	16	170	135	85	0.5
9	8.0	1013	648	24	57	2	24.8	5.3	54	93	195	10	180	190	50	17	176	122	87	0.4
Min	7.6	1013	648	18	47	1.6	17.4	3	30	73	177	10	175	175	43	12	169	122	85	0.4
Мах	8.0	1133	725	34	81	4.6	26.2	9	81	267	199	10	194	194	60	21	207	152	114	0.6
Avg.	7.8	1054	675	25	62	3.0	21.6	4	56	133	190	2	183	185	49	17	182	136	97	0.5

CONCLUSIONS

In the present study few samples showed that the values of Nitrates and Phosphates increased from pre-monsoon to postmonsoon. It indicates that through agricultural runoff of fertilizers into the Lakes is increasing their concentrations. Lake waters are being polluted by various physicochemical parameters like turbidity, total dissolved solids, phosphates, dissolved oxygen, and biological oxygen demand which are reported to be over the acceptable levels of BIS 2012. Determining the amounts of phosphorus species in the environmental matrix is therefore required in order to supply crucial information for evaluating the condition of ecosystems, looking into biogeochemical processes, and keeping an eye on legal compliance.

REFERENCES

- 1. Badamasi, Hamza & Yaro, Muhammad Nasir & Ibrahim, Ali & Aliyu Bashir, Iliyasu. (2019). Impacts of Phosphates on Water Quality and Aquatic Life. 4. 124-133.
- 2. Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W.,Sharpley, A.N and Smith. V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications. 1998; 8(3): 559-568.
- 3. Huma Zia1 , Nick R Harris1 , Geoff V Merrett1 , Mark Rivers2 , Neil Coles2. The Impact of Agricultural Activities on Water Quality: A Case for Collaborative Catchment-Scale Management using Integrated Wireless Sensor Networks
- 4. Hunter, H. M. and Richard S. Walton. "Landuse effects on fluxes of suspended sediment, nitrogen and phosphorus from a river catchment of the Great Barrier Reef, Australia." *Journal of Hydrology* 356 (2008): 131-146.
- Moss B (2008) Water pollution by agriculture. Philos Trans Royal Soc B: Biol Sci 363(1491):659–666. https:// doi. org/ 10.1098/rstb.2007.2176
- 6. Parashar V. K. Use of Nitrogenous Fertilizers and its Impact on Water Quality with Special Reference to Agricultural Development. Orient J Phys Sciences 2016;1(1-2).
- Srinidhi NS, Madhusudhana Reddy P, Anji Reddy M (2022). Assessment of Water Quality of Ameenpur Lake: The Biodiversity Heritage Site of India. Ecology, Environment and Conservation Paper. Volume 28, May Suppl. Issue 2022; Page No. (450-455).
- 8. Torres, F., Estela, J., Miro, M., Cladera, A and Cerda, V. Environmental Pollution. Anal Chim Act. 2004; 510: 61].