
DOI:	https://doi.org/10.51470/ER.2023.5.2.29Volume 5, Issue 2, 2023

ABSTRACT
Coastal	ecosystems	such	as	mangroves,	salt	marshes,	and	seagrass	meadows	play	a	central	role	in	carbon	storage,	shoreline	protection,	
and	habitat	provision.	Restoration	efforts	have	expanded	globally,	but	systematic	methods	to	evaluate	their	effectiveness	remain	limited.	
Field	surveys	provide	accurate	data	at	local	scales	but	are	restricted	in	coverage	and	continuity.	This	paper	reviews	approaches	that	
integrate	remote	sensing,	isotopic	proxy	analysis,	and	machine	learning	for	assessing	coastal	vegetation	restoration.	Remote	sensing	
enables	spatial	and	temporal	monitoring	of	vegetation	change.	Isotopic	proxies	provide	indicators	of	nutrient	dynamics	and	carbon	
sequestration.	Machine	learning	supports	the	integration	of	heterogeneous	datasets	and	the	development	of	predictive	models.	The	
combination	of	these	methods	allows	assessment	of	structural	and	functional	recovery	at	multiple	scales.	A	framework	is	outlined	for	
applying	 these	approaches	 in	 restoration	monitoring	and	management.	Research	directions	are	 identi�ied	 in	 relation	 to	 sampling	
design,	data	integration,	and	policy	applications.	

Keywords:	guiding	adaptive	management,	ensuring	accountability,	integrate	remote	sensing.

Introduction
Coastal ecosystems, including mangroves, salt marshes, and 
seagrass meadows, provide essential ecological services that 
support biodiversity, mitigate climate change, and sustain 
human livelihoods. These ecosystems sequester carbon at rates 
signi�icantly higher than many terrestrial forests, regulate 
nutrient cycles, and stabilize coastlines against erosion [1]. 
However, widespread anthropogenic pressures, such as coastal 
development, aquaculture expansion, pollution, and climate-
driven sea level rise, have resulted in substantial degradation of 
these systems. Restoration of coastal vegetation has therefore 
become a global priority, with initiatives undertaken in many 
regions to re-establish ecological function and secure long-term 
ecosystem services. Despite the increasing scale of restoration 
proj ect s ,  eva lu a t ing  t heir  effect iveness  rema ins  a 
methodological challenge. Conventional assessment relies 
heavily on �ield-based ecological surveys, which provide 
detailed measurements of vegetation structure, biomass, and 
species composition. While these approaches yield accurate 
site-speci�ic information, they are often labor-intensive, costly, 
and temporally constrained, limiting their utility for monitoring 
large spatial extents or long-term restoration outcomes [2], 
restoration success is not only determined by vegetation re-
establishment but also by the recovery of ecological processes 
such as nutrient cycling, primary productivity, and carbon 
sequestration, which require complementary assessment 
methods.
Recent advances in remote sensing technologies have created 
opportunities for large-scale and cost-effective monitoring of 
coastal vegetation restoration. Satellite platforms, airborne 
sensors, and unmanned aerial systems can detect changes in 
vegetation cover, canopy height, and spectral properties over 
time. 
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For example, high-resolution multispectral and hyperspectral 
imagery allow identi�ication of species composition and 
physiological status, while LiDAR provides three-dimensional 
structural information that is critical for estimating 
aboveground biomass [3]. Remote sensing thus provides 
scalable tools for assessing both structural and functional 
indicators of ecosystem recovery. Alongside remote sensing, 
isotopic proxies have emerged as valuable indicators of 
ecosystem processes in restored coastal environments. Stable 
isotopes of carbon (δ¹³C) and nitrogen (δ¹⁵N) can reveal sources 
of organic matter, trophic interactions, and nutrient dynamics, 
while radiocarbon dating offers insights into soil carbon 
accumulation and turnover rates [4]. In restoration contexts, 
isotopic analysis allows the evaluation of whether nutrient 
cycling and carbon sequestration processes in restored sites 
converge with those observed in natural reference systems. This 
approach provides a direct measure of functional recovery 
beyond visual vegetation growth metrics.
The increasing availability of complex datasets from remote 
sensing, �ield surveys, and isotopic analysis raises the need for 
advanced analytical frameworks. Machine learning offers a suite 
of computational approaches capable of integrating diverse 
data sources, detecting nonlinear patterns, and generating 
predictive models. Algorithms such as random forests, support 
vector machines, and neural networks have been applied to 
vegetation classi�ication, biomass estimation, and carbon stock 
prediction. In restoration monitoring, machine learning can 
enhance accuracy by combining spectral, structural, and 
isotopic information, thereby producing more comprehensive 
assessments of ecosystem recovery trajectories [5]. An 
integrative approach that combines remote sensing, isotopic 
proxies, and machine learning can therefore provide a robust 
framework for evaluating coastal vegetation restoration 
effectiveness. 
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Such an approach enables assessment across multiple spatial 
and temporal scales, captures both structural and functional 
recovery, and supports predictive modeling of restoration 
outcomes under varying environmental conditions [6]. By 
bridging ecological �ieldwork with advanced computational 
methods, this integration addresses existing limitations in 
restoration monitoring and improves the evidence base for 
management decisions.
The application of integrative monitoring approaches also has 
implications for policy and practice. Restoration projects are 
increasingly tied to international frameworks such as the United 
Nations Decade on Ecosystem Restoration and climate 
mitigation commitments under the Paris Agreement. 
Demonstrating restoration effectiveness through transparent, 
scienti�ically validated methods is essential for securing 
�inancial support, guiding adaptive management, and ensuring 
accountability. Integrating remote sensing, isotopic analysis, 
and machine learning provides a pathway toward standardized, 
reproducible, and scalable evaluation frameworks that align 
with these global priorities [7]. This paper reviews current 
progress in applying remote sensing, isotopic proxies, and 
machine learning for coastal vegetation restoration monitoring. 
It outlines the strengths and limitations of each method, 
describes their potential synergies, and proposes a conceptual 
framework for integrated assessment. 

Remote	 Sensing	 Approaches	 for	 Coastal	 Vegetation	
Monitoring
Remote sensing has become a cornerstone of ecological 
monitoring, offering scalable, repeatable, and relatively cost-
effective methods for tracking coastal vegetation dynamics. 
Unlike traditional �ield surveys, which are spatially restricted 
and resource-intensive, remote sensing enables systematic 
observation of entire coastlines over long temporal scales [8]. 
For coastal vegetation restoration, these approaches are 
particularly valuable, as they allow detection of changes in 
vegetation cover, canopy structure, and ecological connectivity, 
thereby providing indicators of restoration effectiveness.

Optical	Sensors
Optical remote sensing has been widely applied to monitor 
vegetation condition and distribution. Satellite systems such as 
Landsat, Sentinel-2, and PlanetScope provide multispectral 
imagery that is especially useful for detecting vegetation 
dynamics through spectral indices. The Normalized Difference 
Vegetation Index (NDVI) remains the most commonly used, 
re�lecting chlorophyll activity and photosynthetic vigor. 
However, indices such as the Enhanced Vegetation Index (EVI) 
and Soil-Adjusted Vegetation Index (SAVI) have been 
increasingly utilized to correct for atmospheric interference and 
soil background re�lectance, both of which are signi�icant in 
intertidal and coastal environments. Long-term data archives, 
particularly from Landsat, allow assessment of historical 
vegetation trajectories, while newer high-resolution platforms 
such as PlanetScope enable �ine-scale monitoring of restoration 
plots. Optical data, however, face limitations in cloudy or rainy 
environments, which are frequent in coastal regions [9]. Despite 
these challenges, the integration of multi-temporal optical 
datasets has proven effective in detecting vegetation phenology, 
colonization patterns in restoration sites, and spatial shifts 
driven by sea-level rise or human interventions.

Radar	and	LiDAR
While optical sensors provide spectral insights, structural 
information is better captured through active remote sensing 
technologies such as Synthetic Aperture Radar (SAR) and Light 
Detection and Ranging (LiDAR). SAR penetrates cloud cover and 
can capture data regardless of lighting conditions, making it 
highly reliable for monitoring in tropical and subtropical coastal 
zones. Its backscatter signals are sensitive to vegetation 
structure, canopy density, and water content, which are key 
indicators of ecosystem recovery in mangroves and salt 
marshes. For instance, SAR data have been used to map 
mangrove biomass, monitor hydrological dynamics, and detect 
storm-related damages. Airborne and terrestrial LiDAR, on the 
other hand, provide three-dimensional representations of 
vegetation canopies, delivering precise measurements of 
canopy height, vertical structure, and aboveground biomass. In 
restoration projects, LiDAR has been instrumental in 
quantifying growth rates of replanted mangroves, detecting 
changes in canopy closure, and modeling habitat suitability for 
fauna dependent on coastal vegetation [10]. Combined SAR-
LiDAR applications further enhance the ability to assess both 
horizontal and vertical aspects of restoration success.

Drone-Based	Imaging
Unmanned Aerial Vehicles (UAVs) are increasingly being 
adopted in restoration monitoring due to their ability to capture 
ultra-high-resolution imagery at �lexible temporal intervals. 
UAV platforms equipped with RGB, multispectral, or thermal 
cameras provide detailed spatial data for small to medium-scale 
restoration plots. Such imagery is particularly useful for 
assessing seedling survival, species-speci�ic composition, and 
canopy density. Compared to satellite-based sensors, UAVs offer 
the advantage of site-speci�ic customization and rapid 
deployment, making them suitable for adaptive management 
practices. For example, drone surveys can be aligned with 
planting cycles, enabling managers to assess survival 
immediately after planting and to monitor stress responses 
under variable hydrological or climatic conditions [11]. 
However, UAV applications are limited in spatial coverage and 
are best used in conjunction with broader-scale satellite data.

Quanti�ication	of	Spatial	Metrics
A key contribution of remote sensing is its ability to derive 
spatial metrics relevant to ecological restoration. Metrics such 
as vegetation cover, patch size distribution, connectivity, and 
successional trajectories can be quanti�ied across temporal 
sequences. These indicators not only describe the extent of 
vegetation recovery but also provide insights into landscape-
level processes, including habitat connectivity and resilience. In 
coastal ecosystems, where fragmentation reduces ecological 
function, such spatial metrics are critical for evaluating whether 
restoration interventions lead to functional recovery. Remote 
sensing approaches thus provide a multidimensional 
perspective on restoration outcomes by combining spectral, 
structural, and spatial analyses. Optical sensors track vegetation 
health, radar and LiDAR capture canopy structure and biomass, 
and UAVs deliver high-resolution imagery for plot-level 
a s s e s s m e n t s  [ 1 2 ] .  To g e t h e r,  t h e s e  to o l s  g e n e ra te 
complementary datasets that support robust evaluations of 
restoration effectiveness across scales.
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Isotopic	Proxies	as	Functional	Indicators
The evaluation of coastal vegetation restoration requires 
indicators that go beyond structural measures such as canopy 
cover or biomass. Functional recovery, particularly in terms of 
biogeochemical processes, is central to determining whether 
restored ecosystems provide services comparable to 
undisturbed systems. Stable and radiogenic isotopes have 
emerged as valuable tools in this regard, as they capture 
information on carbon and nitrogen cycling, organic matter 
sources, and long-term carbon storage [13]. By applying 
isotopic approaches, researchers are able to assess ecosystem 
function in ways that conventional monitoring methods cannot.

Carbon	Isotopes	(δ¹³C)
Stable carbon isotopes (δ¹³C) provide information on the 
sources of primary productivity and pathways of carbon 
assimilation within coastal ecosystems [14]. Different plant 
groups, such as mangroves, seagrasses, and salt marsh species, 
exhibit distinct δ¹³C signatures due to differences in 
photosynthetic pathways and carbon source utilization. For 
instance, mangroves growing in intertidal environments often 
display enriched δ¹³C values compared to seagrasses, re�lecting 
variations in dissolved inorganic carbon pools. In restoration 
monitoring, δ¹³C values can be used to verify whether newly 
planted or naturally regenerating vegetation assimilates carbon 
in a manner consistent with mature reference stands. 
Furthermore, by analyzing soil organic matter δ¹³C, researchers 
can infer the relative contributions of autochthonous (plant-
derived) versus allochthonous (external) inputs, thereby 
assessing the development of ecosystem-speci�ic carbon pools. 
This is particularly relevant to evaluating blue carbon 
sequestration potential in restored habitats.

Nitrogen	Isotopes	(δ¹⁵N)
Nitrogen isotopes (δ¹⁵N) serve as indicators of nutrient cycling 
and anthropogenic in�luences within coastal ecosystems. 
Elevated δ¹⁵N values in plant tissue often signify wastewater or 
agricultural nutrient inputs, while lower values may indicate 
reliance on atmospheric or microbial nitrogen �ixation. In 
restored mangroves or marshes, δ¹⁵N patterns can reveal the 
extent to which ecosystems have established internal nutrient 
cycling processes comparable to natural reference systems. By 
analyzing δ¹⁵N in both vegetation and sediment, researchers 
can evaluate microbial transformations such as denitri�ication,

 which play critical roles in nitrogen removal and water quality 
improvement [15]. These assessments are particularly 
important in urban or agricultural coastlines, where nutrient 
enrichment can undermine restoration success. The ability to 
trace anthropogenic versus natural nitrogen sources provides a 
functional measure of ecological resilience in restored habitats.

Radiocarbon	(¹⁴C)
Radiocarbon (¹⁴C) analysis offers insights into the persistence 
and age of organic carbon stored in soils and sediments. In 
coastal ecosystems, where long-term carbon storage represents 
a signi�icant climate mitigation service, ¹⁴C data are particularly 
valuable. Restored sites may initially accumulate younger 
organic matter with shorter turnover times, while mature 
systems often contain older, more stabilized carbon pools.By 
comparing ¹⁴C signatures of restored versus reference 
ecosystems, it is possible to evaluate the progression of soil 
organic matter stabilization, a key determinant of blue carbon 
sequestration [16]. This approach thus provides a temporal 
perspective, complementing short-term monitoring of 
vegetation growth with long-term assessments of carbon 
storage potential.

Functional	Comparisons	with	Reference	Ecosystems
The integration of δ¹³C, δ¹⁵N, and ¹⁴C analyses enables 
researchers to move beyond simple biomass or cover-based 
indicators. By linking isotopic patterns with vegetation 
recovery, it becomes possible to determine whether restored 
ecosystems replicate the functional characteristics of natural 
systems. For example, convergence of δ¹³C and δ¹⁵N values 
between restored and reference stands may indicate the re-
establishment of ecosystem-speci�ic carbon and nutrient cycles. 
Similarly, radiocarbon evidence of increasing soil organic 
carbon age suggests progression toward long-term carbon 
sequestration comparable to undisturbed sites. Isotopic proxies 
thus provide robust, process-oriented indicators of restoration 
success [17]. Carbon isotopes track productivity and carbon 
source dynamics, nitrogen isotopes reveal nutrient cycling and 
anthropogenic inputs, and radiocarbon quanti�ies organic 
carbon persistence. Together, these tools allow for a functional 
evaluation of restored coastal ecosystems, ensuring that 
monitoring captures both ecological structure and the 
underlying biogeochemical processes critical to ecosystem 
service provision.

Table	1.	Remote	sensing	tools	and	their	applications	in	coastal	vegetation	monitoring

Table	2.	Isotopic	proxies	used	in	restoration	effectiveness	assessment

Table	3.	Machine	learning	approaches	for	restoration	assessment
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Machine	Learning	for	Restoration	Assessment
The growing availability of large and complex datasets from 
remote sensing platforms, isotopic measurements, and �ield 
surveys has created opportunities for advanced analytical 
approaches in ecological restoration monitoring. Traditional 
statistical methods often struggle to capture the non-linear 
relationships and multidimensional interactions that 
characterize coastal ecosystems. Machine learning (ML) 
algorithms, by contrast, offer a �lexible framework for pattern 
recognition, prediction, and data integration. When applied to 
restoration assessment, ML enhances both the accuracy and 
ef�iciency of monitoring efforts, providing insights that support 
adaptive management.
One important application of ML lies in classi�ication tasks. 
Algorithms such as Random Forests and Support Vector 
Machines have demonstrated strong performance in identifying 
plant species, detecting invasive taxa, and assessing vegetation 
health using remote sensing imagery [18]. These models can 
process spectral signatures from satellites or drones and assign 
them to speci�ic vegetation types with high precision. In 
restoration contexts, this allows managers to track species 
composition over time, evaluate the survival of planted 
individuals, and identify areas where invasive species may 
threaten project success, regression-based models are valuable 
for quantifying structural and functional attributes of restored 
ecosystems. Gradient boosting techniques and deep learning 
models can estimate biomass, canopy density, and even soil 
carbon stocks by linking spectral and isotopic inputs to �ield 
measurements. These estimates provide continuous and 
spatially explicit data layers, reducing the need for intensive 
�ield sampling. By incorporating isotopic proxies such as δ¹³C or 
δ¹⁵N into regression models, it is possible to couple vegetation 
structure with functional indicators, yielding a more holistic 
picture of ecosystem recovery. Predictive modeling represents 
another frontier for ML applications [4]. By integrating long-
term datasets with current monitoring inputs, algorithms can 
forecast restoration trajectories under varying climate 
conditions and management strategies. For example, ML can 
simulate how sea-level rise or nutrient enrichment might 
in�luence vegetation dynamics, thereby guiding proactive 
interventions. Such forecasting capacity is particularly valuable 
in coastal regions, where restoration outcomes are highly 
sensitive to environmental change [8]. The integration of ML 
with remote sensing and isotopic data thus strengthens the 
predictive and diagnostic capacity of restoration science. By 
combining structural indicators from imagery with functional 
insights from isotopes, ML creates a uni�ied framework for 
evaluating both ecosystem condition and trajectory. This 
integration supports evidence-based management, allowing 
practitioners to make informed decisions that improve 
restoration outcomes and enhance the long-term resilience of 
coastal ecosystems.

An	Integrative	Framework
Developing an effective framework for assessing coastal 
vegetation restoration requires combining structural, 
functional, and predictive indicators into a uni�ied system. 

Table	4.	Proposed	integrative	framework	for	restoration	assessment

Such an approach ensures that monitoring extends beyond 
simple measurements of vegetation cover and instead captures 
the ecological processes that determine long-term restoration 
success. By integrating remote sensing, isotopic proxies, and 
machine learning, the framework supports both scienti�ic 
evaluation and practical decision-making for managers and 
policymakers. The �irst step involves baseline characterization, 
which establishes reference conditions against which 
restoration progress can be evaluated. High-resolution imagery 
from satellites or drones provides spatial data on vegetation 
extent, canopy density, and landscape con�iguration prior to 
intervention [9]. At the same time, isotopic proxies such as δ¹³C, 
δ¹⁵N, and radiocarbon (¹⁴C) offer functional insights into carbon 
sequestration, nutrient cycling, and soil organic matter stability. 
Together, these datasets provide a comprehensive picture of the 
structural and biogeochemical state of the ecosystem before 
restoration activities begin.
During the monitoring phase, multi-temporal observations 
allow for the detection of changes over time. Remote sensing 
platforms enable repeated assessments of vegetation cover, 
species composition, and successional dynamics, while isotopic 
measurements provide indicators of shifts in productivity and 
nutrient pathways. Linking temporal changes in isotopic 
signatures with vegetation dynamics helps determine whether 
restored ecosystems are converging toward natural reference 
systems in both structure and function. The third component is 
data integration, where machine learning algorithms combine 
spatial, functional, and contextual data. Remote sensing outputs 
provide information on vegetation structure, isotopes highlight 
ecological processes, and contextual data include hydrological 
conditions, management practices, and disturbance regimes. 
Machine learning models can synthesize these diverse datasets, 
identify complex interactions, and generate reliable predictions 
of ecosystem trajectories [12]. This integration transforms 
isolated datasets into a cohesive monitoring system capable of 
diagnosing restoration outcomes at multiple scales, the 
framework emphasizes decision support, translating scienti�ic 
outputs into actionable tools for managers and policymakers. 
Predictive dashboards, built on machine learning models, can 
display real-time indicators of restoration effectiveness and 
simulate potential outcomes under different management or 
climate scenarios [14]. These tools provide a transparent basis 
for adaptive strategies, enabling stakeholders to respond 
quickly to emerging challenges and optimize restoration 
investments, baseline assessment, continuous monitoring, 
integrated analysis, and decision support, this framework 
provides a comprehensive approach to evaluating coastal 
vegetation restoration. It bridges the gap between research and 
practice, ensuring that scienti�ic insights directly inform 
adaptive management and policy development.

Research	Priorities
Future research on coastal vegetation restoration should focus 
on advancing methodologies that improve both the scalability 
and applicability of monitoring frameworks. A key priority is the 
development of low-cost isotopic sampling protocols suitable 
for large-scale restoration initiatives. 
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While isotopic analyses provide valuable insights into 
ecosystem function, the associated costs and logistical demands 
often restrict their application to small-scale studies. Simpli�ied 
sampling approaches, �ield-ready tools, and standardized 
protocols would enable wider use of isotopic proxies, 
particularly in resource-limited contexts. Another important 
direction is improving machine learning interpretability in 
ecological applications. Many ML models, particularly deep 
learning approaches, are often viewed as “black boxes,” limiting 
stakeholder trust and adoption. Research should prioritize 
developing interpretable algorithms and visualization tools that 
clearly explain how models derive predictions [16]. Such 
transparency is essential to ensure that outputs are both 
scienti�ically credible and usable by practitioners making 
restoration decisions.
The integration of socio-ecological dimensions into monitoring 
frameworks also requires attention. Restoration success is not 
solely determined by ecological metrics but is strongly 
in�luenced by human engagement, governance structures, and 
cultural practices [9]. Future studies should combine remote 
sensing and ML-based monitoring with participatory 
approaches that include local community perspectives. This 
integration would ensure that restoration projects are both 
ecologically effective and socially sustainable, there is a need for 
harmonization of international monitoring standards for 
coastal ecosystem restoration. Current practices vary widely 
across regions, hindering the ability to compare outcomes or 
synthesize global trends. Developing common guidelines for 
data collection, isotopic analysis, and remote sensing 
interpretation would enhance comparability, facilitate cross-
site learning, and support global assessments of restoration 
progress, these research priorities aim to strengthen the 
scienti�ic basis of restoration monitoring while ensuring that 
methods are practical, transparent, and globally relevant.

Conclusion
The assessment of coastal vegetation restoration requires 
approaches that move beyond traditional ecological surveys. 
Conventional monitoring captures limited aspects of ecosystem 
recovery and often fails to link structural observations with 
underlying functional processes, remote sensing, isotopic 
proxies, and machine learning, restoration outcomes can be 
evaluated in a more comprehensive and scalable manner. 
Remote sensing contributes spatially explicit information on 
vegetation cover and dynamics, isotopic proxies provide 
insights into nutrient cycling and carbon sequestration, while 
machine learning facilitates data integration and predictive 
modeling. Together, these tools offer an interdisciplinary 
framework that captures both ecological function and 
resilience. Importantly, such integration also supports decision-
making by providing managers and policymakers with 
evidence-based tools to evaluate progress and adapt strategies. 
In an era of accelerating global change, this combined approach 
offers a robust pathway to ensure the long-term effectiveness of 
coastal ecosystem restoration initiatives.

References

Simpson, J., Bruce, E., Davies, K. P., & Barber, P. (2022). A 
blueprint for the estimation of seagrass carbon stock using 
remote sensing-enabled proxies. Remote	Sensing, 14(15), 
3572.

1.

Cavender-Bares, Jeannine, Fabian D. Schneider, Maria João 
Santos, Amanda Armstrong, Ana Carnaval, Kyla M. Dahlin, 
Lola Fatoyinbo et al. "Integrating remote sensing with 
ecology and evolut ion to  advance biodiversity 
conservation." Nature	Ecology	&	Evolution 6, no. 5 (2022): 
506-519.

Dierssen, H. M., Ackleson, S. G., Joyce, K. E., Hestir, E. L., 
Castagna, A., Lavender, S., & McManus, M. A. (2021). Living 
up to the hype of hyperspectral aquatic remote sensing: 
science, resources and outlook. Frontiers	in	Environmental	
Science, 9, 649528.

Fundisi, E., Tesfamichael, S. G., & Ahmed, F. (2022). Remote 
sensing of savanna woody species diversity: A systematic 
review of data types and assessment methods. Plos	 one, 
17(12), e0278529.

Dronova, Iryna, Chippie Kislik, Zack Dinh, and Maggi Kelly. 
"A review of unoccupied aerial vehicle use in wetland 
applications: Emerging opportunities in approach, 
technology, and data." Drones 5, no. 2 (2021): 45.

Yang, D., & Bowen, G. J. (2022). Integrating plant wax 
abundance and isotopes for paleo-vegetation and 
paleoclimate reconstructions: a multi-source mixing model 
using a Bayesian framework. Climate	of	 the	Past, 18(10), 
2181-2210.

Davis, D. S., & Douglass, K. (2021). Remote sensing reveals 
lasting legacies of land-use by small-scale foraging 
communities in the southwestern Indian ocean. Frontiers	in	
Ecology	and	Evolution, 9, 689399.

Ahmad, U., Alvino, A., & Marino, S. (2021). A review of crop 
water stress assessment using remote sensing. Remote	
Sensing, 13(20), 4155.

Li, W., El-Askary, H., Thomas, R., Tiwari, S. P., Manikandan, K. 
P., Piechota, T., & Struppa, D. (2020). An assessment of the 
hydrological trends using synergistic approaches of remote 
sensing and model evaluations over global arid and semi-
arid regions. Remote	Sensing, 12(23), 3973.

Duffy, J. Emmett, Lisandro Benedetti-Cecchi, Joaquin 
Trinanes, Frank E. Muller-Karger, Rohani Ambo-Rappe, 
Christoffer Boström, Alejandro H. Buschmann et al. 
"Toward a coordinated global observing system for 
seagrasses and marine macroalgae." Frontiers	 in	 Marine	
Science 6 (2019): 317.

Zhou, T., Wen, X., Feng, Q., Yu, H., & Xi, H. (2022). Bayesian 
model averaging ensemble approach for multi-time-ahead 
groundwater level prediction combining the GRACE, 
GLEAM, and GLDAS data in arid areas. Remote	 Sensing, 
15(1), 188.

Alqasemi, A. S., Ibrahim, M., Fadhil Al-Quraishi, A. M., Saibi, 
H., Al-Fugara, A. K., & Kaplan, G. (2021). Detection and 
modeling of soil salinity variations in arid lands using 
remote sensing data. Open	Geosciences, 13(1), 443-453.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

https://er.researchfloor.org/
https://er.researchfloor.org/


B.	Karthik.,	 	(2023)/	Environmental	Reports;	an	International	Journal

https://er.research�loor.org/34.

Ciais, Philippe, A. Johannes Dolman, Antonio Bombelli, 
Riley Duren, Anna Peregon, Peter J. Rayner, C. Miller et al. 
"Current systematic carbon-cycle observations and the 
need for implementing a policy-relevant carbon observing 
system." Biogeosciences 11, no. 13 (2014): 3547-3602.

Biagetti, S., Merlo, S., Adam, E., Lobo, A., Conesa, F. C., Knight, 
J., & Madella, M. (2017). High and medium resolution 
s a t e l l i t e  i m a g e r y  t o  e v a l u a t e  l a t e  H o l o c e n e 
human–environment interactions in arid lands: A case 
study from the Central Sahara. Remote	Sensing, 9(4), 351.

Hamad, I. Y., Staehr, P. A. U., Rasmussen, M. B., & Sheikh, M. 
(2022). Drone-based characterization of seagrass habitats 
in the tropical waters of Zanzibar. Remote	Sensing, 14(3), 
680.

13.

14.

15.

Lettenmaier, D. P., Alsdorf, D., Dozier, J., Huffman, G. J., Pan, 
M., & Wood, E. F. (2015). Inroads of remote sensing into 
hydrologic science during the WRR era. Water	Resources	
Research, 51(9), 7309-7342.

Stein, R. A., Sheldon, N. D., & Smith, S. Y. (2021). Paci�ic 
Northwest plants record multiannual atmosphere–ocean 
circulation patterns. Journal	 of	 Geophysical	 Research:	
Atmospheres, 126(19), e2021JD035454.

Silva, L. C. (2022). Expanding the scope of biogeochemical 
research to accelerate atmospheric carbon capture. 
Biogeochemistry, 161(1), 19-40.

16.

17.

18.

https://er.researchfloor.org/
https://er.researchfloor.org/

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

